viernes, 8 de mayo de 2020

Introducción


La terapia génica es la corrección de un defecto genético causante de enfermedad. Este concepto médico ya se planteó a principios de los años 70, cuando empezaban a identificarse los primeros genes en organismos como la bacteria Escherichia coli o en la Drosophila melanogaster, la mosca del vinagre. Ambos modelos de estudio han proporcionado las bases genéticas de la medicina actual. Los estudios actuales sobre genes de organismos más complejos, entre ellos el humano, no son más que el resultado y la extensión de todos estos modelos establecidos hace ya más de cuarenta años.
En la actualidad, la dotación genética de una célula puede ser modificada mediante la introducción de un gen normal en el organismo diana que sustituya al gen defectuoso en su función; es lo que se denomina terapia génica. La terapia génica se puede definir como el conjunto de técnicas que permiten vehiculizar secuencias de ADN o de ARN al interior de células diana, con objeto de modular la expresión de determinadas proteínas que se encuentran alteradas, revirtiendo así el trastorno biológico que ello produce.



APLICACIONES DE LA TERAPIA GÉNICA

TERAPIA GÉNICA DE LAS ENFERMEDADES MONOGÉNICAS
La terapia génica fue inicialmente concebida como una forma de tratamiento de enfermedades genéticas causadas por mutación de un sólo gen (monogénicas), de las que se conocen aproximadamente 4.000. Las enfermedades hereditarias comprenden trastornos de muy diversa índole, en los que un gen defectuoso determina que no se sintetice una proteína específica, o bien que se elabore una proteína anormal. En ambos casos, la ausencia de la proteína normal puede ocasionar muy diversas manifestaciones clínicas, según la función estructural o enzimática que normalmente ejerce dicha proteína en las células.
En términos generales se trata de enfermedades en las que la farmacoterapia convencional resulta poco eficaz. Sólo para algunos de estos trastornos se han desarrollado y aplicado tratamientos basados en la restitución de la proteína defectuosa o deficitaria.

TERAPIA GÉNICA DEL CÁNCER
En la actualidad se considera que las alteraciones genéticas desempeñan un papel esencial en la patogenia del cáncer. Por una parte, los oncogenes son genes que pueden producir transformación maligna cuando se expresan de forma inadecuada debido a mutación, a ampliación, o a nueva disposición. Los protooncogenes son los genes normales que desempeñan un importante papel en la proliferación y diferenciación celular normales, pero que son susceptibles de ser mutados y convertirse en oncogenes, provocando la aparición de cáncer. En la mayor parte de los casos codifican factores de crecimiento, receptores, u otras moléculas implicadas en las vías de transducción de la señal, o factores de transcripción que regulan la expresión génica.

TERAPIA GÉNICA DE LA INFECCIÓN POR VIH
Actualmente, la infección por el Virus de la Inmunodeficiencia Humana (VIH) se considera una enfermedad genética de carácter adquirido, ya que el virus retrotranscribe su ARN genómico e integra el ADN de doble hélice resultante en el cromosoma de la célula huésped, de modo que es capaz de modular las funciones de la célula para, finalmente, suprimir el sistema inmune. Por ello, el SIDA es en la actualidad un claro objetivo de la terapia génica. Se han realizado ya numerosos estudios sobre el tratamiento de la infección por el VIH mediante terapia génica, tanto in vitro en diferentes líneas celulares como in vivo en animales de experimentación. Asimismo, en la actualidad se están ensayando diversos protocolos clínicos de terapia génica para el tratamiento del SIDA. Los ensayos clínicos en desarrollo utilizan mayoritariamente técnicas ex vivo. Se aíslan células del paciente, las cuales se utilizan como vehículos celulares de los genes terapéuticos. Mediante vectores víricos o por inyección directa de ADN, se introduce un gen terapéutico en estas células diana. A continuación, las células transducidas, es decir, aquellas que han incorporado y expresado el transgén, son reintroducidas en el paciente por vía intravenosa.



CONCLUSIÓN
En general, los factores necesarios para conseguir que la terapia génica sea efectiva no son diferentes que para otras modalidades terapéuticas nuevas. Incluyen los factores técnicos (la distribución y expresión genética), clínicos (eficacia y seguridad terapéutica) y factores socieconómicos. Se está realizando un enorme trabajo en la actualidad para mejorar la capacidad de los vectores para transducir células de forma segura y específica, para aumentar la capacidad de regulación de la expresión del transgén por los promotores y para mejorar el conocimiento de las condiciones más adecuadas para la transferencia génica. Aún así, todavía es necesario un gran esfuerzo para conseguir el éxito final. Los resultados de la terapia génica deben tener beneficios que pesen más que los riesgos y debe ofrecer ventajas sobre los tratamientos convencionales, sólo así puede llegar a ser aceptada en la práctica médica general.


Vectores


Para que la terapia génica funcione se debe introducir el gen terapéutico en cientos de millones de células, y para ello es necesario un vehículo o vector que lo trasporte hasta el interior de las células.
Un buen vector al menos debe:
- Ser reproducible y estable.
- Permitir la inserción de material genético.
- Reconocer y actuar sobre células específicas.
- Poder regular la expresión del gen terapéutico.
- Carecer de elementos que induzcan una respuesta inmune.
- Ser inocuo o que sus posibles efectos secundarios sean mínimos.



Los retrovirus comprenden una clase de virus cuyo material genético es una cadena sencilla de ARN; durante su ciclo vital, el virus se transcribe en una molécula bicatenaria de ADN, gracias a la acción de la enzima transcriptasa reversa, que se integra en el genoma de la célula huésped sin aparente daño para ella. La mayor parte de los retrovirus, a excepción del HIV, sólo se pueden integrar en células con capacidad para replicarse, lo cual restringe su uso. Sin embargo, se pueden desarrollar en grandes cantidades y su expresión en la célula hospedadora se mantiene durante largos periodos de tiempo.
1.  Los retrovirus comprenden una clase de virus cuyo material genético es una cadena sencilla de ARN; durante su ciclo vital, el virus se transcribe en una molécula bicatenaria de ADN, gracias a la acción de la enzima transcriptasa reversa, que se integra en el genoma de la célula huésped sin aparente daño para ella. La mayor parte de los retrovirus, a excepción del HIV, sólo se pueden integrar en células con capacidad para replicarse, lo cual restringe su uso. Sin embargo, se pueden desarrollar en grandes cantidades y su expresión en la célula hospedadora se mantiene durante largos periodos de tiempo.
2. Los adenovirus son un conjunto de virus con ADN lineal de cadena doble. Los vectores de adenovirus son más grandes y complejos que los retrovirus. La principal ventaja de su utilización en la terapia génica es que se pueden producir en grandes cantidades y transfieren de forma muy eficaz el material genético a un número elevado de células y tejidos, aunque el hospedador parece limitar la duración de la expresión del nuevo material genético.
3.  Los virus adeno-asociados son pequeños, no autónomos y con ADN lineal de cadena sencilla. Los vectores que se forman con este tipo de virus son muy simples y son capaces de expresarse a largo plazo en las células que no se dividen. Otra de las ventajas del uso de virus adeno-asociados es que son virus no patógenos y por lo tanto en la mayoría de los pacientes no aparecen respuestas inmunes. En contrapartida, tiene limitación en el tamaño del DNA recombinante que podemos usar dado el tamaño de estos virus y en la complejidad de su producción.
4.  Los herpesvirus poseen un material genético compuesto por ADN de doble cadena lineal, este tipo de virus son muy útiles, pues es posible insertar en su genoma grandes cantidades de ADN y llevar a cabo durante largos periodos de tiempo infecciones latentes en la célula hospedadora, sin ningún efecto aparente sobre ésta. El inconveniente que presentan estos virus es que están asociados a alteraciones linfoproliferativas, con lo cual, para su uso como vectores es necesario identificar estos genes y eliminarlos, manteniendo únicamente aquellos que permitan la replicación del virus y el mantenimiento del plásmido viral. Hasta la fecha, el uso fundamental de los herpesvirus en la terapia génica se limita al empleo in vivo del herpes simples (HSV).

1.  El bombardeo de partículas constituye una técnica efectiva de transferir genes tanto in vitro como in vivo.  Estas partículas, aceleradas por una descarga eléctrica de un aparato o por un pulso de gas son «disparadas» hacia el tejido.
2.  Otra alternativa es la inyección directa del ADN o ARN puro circular y cerrado covalentemente, dentro del tejido deseado. Es un método económico, y un procedimiento no tóxico, si se compara con la entrega mediante virus. Como desventaja fundamental hay que señalar que los niveles y persistencia de la expresión de genes dura un corto periodo de tiempo.
3.   Un problema que se plantea con las técnicas anteriores es que el vector alcance realmente su objetivo y no quede diseminado por el organismo. Por ello existe un procedimiento que consiste en introducir, junto al material genético que queremos transferir, moléculas que puedan ser reconocidas por los receptores de la célula diana.

Introducción

La terapia génica es la corrección de un defecto genético causante de enfermedad. Este concepto médico ya se planteó a principios de los a...